An introduction to modern missing data analyses.
نویسندگان
چکیده
A great deal of recent methodological research has focused on two modern missing data analysis methods: maximum likelihood and multiple imputation. These approaches are advantageous to traditional techniques (e.g. deletion and mean imputation techniques) because they require less stringent assumptions and mitigate the pitfalls of traditional techniques. This article explains the theoretical underpinnings of missing data analyses, gives an overview of traditional missing data techniques, and provides accessible descriptions of maximum likelihood and multiple imputation. In particular, this article focuses on maximum likelihood estimation and presents two analysis examples from the Longitudinal Study of American Youth data. One of these examples includes a description of the use of auxiliary variables. Finally, the paper illustrates ways that researchers can use intentional, or planned, missing data to enhance their research designs.
منابع مشابه
Modern statistical methods for handling missing repeated measurements in obesity trial data: beyond LOCF.
This paper brings together some modern statistical methods to address the problem of missing data in obesity trials with repeated measurements. Such missing data occur when subjects miss one or more follow-up visits, or drop out early from an obesity trial. A common approach to dealing with missing data because of dropout is 'last observation carried forward' (LOCF). This method, although intui...
متن کاملکاربرد جای گذاری چندگانه در تحقیقات پزشکی و اپیدمیولوژی
Data missing, which occurs for different reasons, is an unavoidable problem in epidemiological studies. It is quite widespread and, therefore, it is considered as a challenge in research design and data analysis by many methodologists. Complete case analysis is often used in studies with missing data however, this approach may result in inaccurate estimates and inferences due to bias associated...
متن کاملاستفاده از دادههای اقلیمی جهانی برای بازسازی خلأهای آماری دادههای دما و بارش (مطالعۀ موردی: ایستگاههای حوزۀ آبخیز خانمیرزا)
Introduction: Due to importance of data quality, issues relating to filling the missing data has found a great deal of interest. Regeneration methods for missing data can be classified into two kinds of classical and modern categories. Application of statistical methods such as relationship with nearby stations and approaches on the base of hydrological, climatological or physiographical simila...
متن کاملPerformance evaluation of different estimation methods for missing rainfall data
There are numerous methods to estimate missing values of which some are used depending on the data type and regional climatic characteristics. In this research, part of the monthly precipitation data in Sarab synoptic station, east Azerbaijan province, Iran was randomly considered missing values. In order to study the effectiveness of various methods to estimate missing data, by seven classic s...
متن کاملParametric and Nonparametric Regression with Missing X’s—A Review
This paper gives a detailed overview of the problem of missing data in parametric and nonparametric regression. Theoretical basics, properties as well as simulation results may help the reader to get familiar with the common problem of incomplete data sets. Of course, not all occurences can be discussed so this paper could be seen as an introduction to missing data within regression analysis an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of school psychology
دوره 48 1 شماره
صفحات -
تاریخ انتشار 2010